

Laser Module Series 13MC

Laser Micro Focus Generator

FEATURES

Machine vision laser spot with rotationally symmetric, Gaussian beam profile.

- Spot diameter starting at 7 μm
- Wavelengths 635 828 nm
- Laser powers up to 105 mW

 Micro Focus Generator for small spot widths and high power density in the focal plane

DESCRIPTION

The laser diode beam source series 13MC produces a rotationally symmetric circular laser spot with Gaussian intensity distribution.

The lasers of series 13MC are <u>Laser Micro Focus Generators</u> designed to produce spots with small spot size. They have a small depth of focus (in this case the depth of focus is the Rayleigh range). <u>Laser Macro Focus Generators</u> like the corresponding lasers of series 13MMC have common basic optical features but are designed to generate laser spots with an extended depth of focus.

The laser has integrated electronics for control of the laser output power. The output power can be controlled using the modulation input ports (TTL and analog) or manually using the potentiometer. Optionally the lasers can be equipped with RS232 serial interface for laser control and data read-out.

The working distance can be adjusted by adjusting the focus setting. Please note that the spot diameter increases proportionally to the working distance.

A fine-adjustment of the distance between laser and target is recommended for fine-focusing.

These high quality lasers can e.g. be used for machine vision applications.

TECHNOTES

- Micro vs. Macro
 What does Micro or Macro Laser mean?
- Laser Modules with RS232 interface
 Features of Laser Modules with RS232 interface
- <u>Electronic features (9)</u>
 <u>Detailed electronic features for all electronics types</u>
 - Overview Electronics Types
 Overview over all Electronics Types
 - <u>Electronics Type C</u>
 <u>Electronic features for electronics type C</u>
 - <u>Electronics Type P</u>
 <u>Electronic features for electronics type P</u>
 - <u>Electronics Type H</u>
 <u>Electronic features for electronics type H</u>
 - <u>Electronics Type HP</u>
 <u>Electronic features for electronics type HP</u>
 - Electronics Type CS with RS232 interface
 Electronic features for electronics type CS
 - Electronics Type PS with RS232 interface
 Electronic features for electronics type PS
 - <u>Electronics Type S</u>
 <u>Electronic features for electronics type S</u>
 - <u>Electronics Type B</u>
 <u>Electronic features for electronics type B</u>
- <u>Laser Line Basics (7)</u>
 <u>Line geometry, intensity distribution, definition of line length and working distance, definition of line width and machine vision applications.</u>
 - <u>Laser Line geometries</u>
 <u>Fan angle vs. semi-telecentric.</u>
- Intensity distribution
 Gaussian intensity distribution and uniform intensity distribution along the laser line

<u>Laser Line length and working distance</u> <u>Line length and working distance definition</u>

- Laser Line Width and Depth of Focus / Rayleigh Range Line width definition
- <u>Laser Speckle</u>
 <u>When do they appear and how to prevent them</u>
- Wavelengths of diode based lasers
 What wavelengths are available for diode based laser modules?
- <u>Cable orientation</u>
 <u>Straight and angled cable exit</u>
- Machine vision applications of Laser Lines (1)
 Laser triangulation, laser light sectioning, particle measurement etc.
 - Laser Diffraction Measurements
- Article Laser Sources for Metrology and Machine Vision
 Laser diode based laser sources for high precision measurement and inspection systems

FAQ

Beam Profile

What is the beam profile of a laser type 13MC?

The laser diodes used within the modules series 13MC/13MMC have an already integrated anamorphic optics that emit a beam with a rotationally symmetric, circular Gaussian intensity profile.

The laser diode beam source series 13MC produces a rotationally symmetric, circular laser spot with Gaussian intensity distribution. It can be used to produce small laser spots with a small Rayleigh range.

The corresponding series 13MMC produces a rotationally symmetric laser spot with extended depth of focus. The beam profile is rotationally symmetric and approx. Gaussian.

What is the difference between a laser type 13MC and a laser type 13MM?

The laser diodes used within the modules series 13MC/13MMC have an already integrated anamorphic optics that emit a beam with a rotationally symmetric, circular Gaussian intensity profile.

The laser diode beam source series 13MC produces a rotationally symmetric, circular laser spot with Gaussian intensity distribution. It can be used to produce small laser spots with a small Rayleigh range.

The laser diodes used within the modules series 13M/13MM have a standard elliptical Gaussian intensity profile. In detail, the lasers of series 13MM thus have an elliptical intensity distribution clipped by a circular aperture. This means these lasers produce produce larger circular laser spots (sometimes slightly elliptical) with an extended depth of focus. The beam profile is approx. Gaussian.

General FAQs

Can I adjust the working distance?

Yes, you can adjust the working distance by adjusting the focus setting. Please note that beam parameters like line length/spot width and line width/spot height increase proportionally to the working distance. Please refer to the manual for the exact description as well as the range in which you may adjust the working distance. Please note that a fine-adjustment of the distance between laser and target is recommended for fine-focusing.

Can I modulate the laser?

Yes, you can modulate the laser using the analog and TTL modulation input. The two modulation input channels are AND-wired.

The input for analog modulation allows applying an analog voltage U_{analog} , which allows a linear control of the laser output power from approximately zero up to the maximum power given by the potentiometer setting.

Please refer to the technical data sheet or manual for the max. modulation frequencies as well as modulation delay and rise and fall times. Please refer to the manual for details concerning the modulation as well timing diagrams.

How can I change the output power of the laser?

The laser has integrated electronics for control of the laser output power. The output power can be controlled using the modulation input ports TTL and analog (TTL only for electronics type B) or manually using the potentiometer.

Using the potentiometer you set the maximum output power of the laser. Turn the potentiometer clockwise for more power and anti-clockwise for lower power.

For all lasers with analog modulation input: The input for analog modulation allows applying an analog voltage U_{analog} , which allows a linear control of the laser output power from approximately zero up to the maximum power given by the potentiometer setting.

Please refer to the manual for more details.

How can I mount the laser to my setup?

The laser can be mounted using a clamp collar or may be clamped radially (in a designated region).

Please refer to the manual for details.

May I take off the attachment optics?

No, you are not allowed to take off the attachment optics. If you do so you can severely damage the laser as well as hurt yourself and others around you.

Each modification of the laser needs to be discussed with Schäfter+Kirchhoff first and is not to be done by the customer.

May I take off the attachment optics?

No, you are not allowed to take off the attachment optics. If you do so you can severely damage the laser as well as hurt yourself and others around you.

Each modification of the laser needs to be discussed with Schäfter+Kirchhoff first and is not to be done by the customer.

My installation space is limited. What options do I have?

There are several options to find the most compact solution:

Many lasers are not only available with a straight cable exit, but also with an angled cable exit, which reduces the module length of the laser.

Often the laser is also avaible with a smaller diameter. Please check the adequate check box in the product configurator to find these options.

I want to equip the laser with my own connector. Is that possible?

Schäfter+Kirchhoff lasers have multiple options for the connection cable and connector.

Standard is a 1.5m cable with a connector type Lumberg (refer to the manual for details). We can also equip the laser with other connectors.

You can also define a customer-specific cable length as well as have an open cable end without connector. This option might be used if you want to attach a customer-specific connector.

Troubleshooting

Why is the laser not emitting?

Is the pin-out of the supply cable incorrect or cable not properly connected?

For modified or customer-specific connectors, check the manual if the the pin-out is correct. Check if all connectors are connected properly.

Is the analog and TTL modulation input voltage too low?

Set the modulation input voltage to the specified value. Refer to the manual for more details.

Is the supply voltage lower than specified?

Raise the supply voltage to the specified value. Refer to the manual for more details.

Is the supply voltage higher than specified?

Lower the supply voltage and apply the specified value. Refer to the manual for more details.

Is the ambient temperature outside of the specified range?

Adjust ambient temperature to the specified rang. Refer to the manual for more details.

Malfunction of laser diode or electronics

Contact supplier to receive an RMA for return delivery.

Why is the laser output power too low?

Is the potentiometer setting for output power not set to maximum?

Turn potentiometer clockwise until it is set to maximum.

Is the analog input voltage too low?

Raise analog modulation input voltage to the maximum specified value. Refer to the manual for more details.

Is the lens contaminated?

Clean lens, but make sure the laser is OFF first. Contact supplier for an RMA and return delivery if necessary.

Degraded laser diode

Contact supplier to receive an RMA for return delivery

Why does the laser not reach 100% of the specified output power?

Is there a voltage drop/potential drop on GND wire?

Raise analog modulation input voltage to 5 V. Refer to the manual for more details.

Is the ambient temperature too high?

Adjust ambient temperature to the specified range.

Why can't I set the laser to zero output power?

Minimum specified laser power

All lasers have a minimum laser power, that cannot be lower than the minimum laser power specified by the laser series. Refer to the data report to find an individual measured value for P_{min} for each laser.

The laser has pulsating/flickering laser power and increased noise. Why?

Is the supply voltage too low?

If the supply voltage is too low the autonomous controller initiates shutdown. Increase supply voltage to compensate for a voltage/potential drop or use a cable with larger cross section.

Have you checked your grounding measures?

Differences in ground potentials can cause earth loops. Check grounding measures and refer to the manual for more details.

Have you checked your cable connections?

Check if cable connections are not connected properly and mechanically stable. If the laser is compatible with a switchbox then make sure that the Lumberg connector is screwed in finger-tight. All connectors (including customer-specific connections) must be properly and mechanically stable connected.

Is the shield of the power cable not connected correctly?

Connect shield correctly. If the laser is compatible with a switchbox also screw in Lumberg Connectors correctly. Refer to the manual for more details.

The modulation inputs are not working

Did you also connect the unused modulation input?

Connect unused modulation input nonetheless. Refer to the manual for details.

Malfunction of electronics

Contact supplier to receive an RMA for return delivery.

There is stray light around the laser line/spot. Why?

Is the laser power too low?

Stray light can be caused if the laser power is too low and close to laser threshold. Raise the output power for stable laser operation.

The laser has insufficient pointing stability. What can I do?

Have you checked the mechanical stability of the laser mount?

Insufficient mechanical stability of the mount can lead to a pointing instability of the laser. If this is the case, improve laser mount, and check if the laser is clamped in the specified clamping region. Refer to the manual for more details.

Is the system affected by temperature changes?

Please check for temperature changes. Improve the temperature management to avoid temperature fluctuations.

Did you wait for the laser to warm up?

Consider specified warm-up time. Refer to the manual for details.

Check the laser power

If the laser power is too low (power too close to laser threshold), pointing stability can be affected. Raise output power for stable laser operation.

The laser has an unstable state of polarization. What can I do?

Check the laser power

If the laser power is too low (power too close to laser threshold), the state of polarization can be affected. Raise output power for stable laser operation.

The laser suddenly emits a strong odor. What do I do?

Immediately disconnect the laser from the power supply! Have you used the laser with the wrong supply voltage?

If you notice a strong odor or anything that indicates burnt electronics/cables/diodes, disconnect the laser from the power supply immediately and take other safety precautions if necessary.

You may have operated the laser with too high a supply voltage and damaged the laser as a result.

Please contact Schäfter+Kirchhoff for an RMA and further instructions.

ACCESSORIES

POWER SUPPLIES FOR LASER MODULES

SWITCHBOXES FOR LASER MODULES

55EX-5 Eccentric key with a stroke of \pm 1.5 mm.

55EX-5-L Alternative eccentric key with long handle with a

stroke of \pm 1.5 mm.

9D-16 Screwdriver WS 1.6

50HD-15 Hex key WS 1.5

RELATED PRODUCTS

LASER MODULES Laser Macro Focus Generator

SERIES 13MMC • Rotationally symmetric beam profile

Extended depth of focus

LASER MODULES • Micro Focus Generator

SERIES LNC-13MC • Rotationally symmetric, Gaussian beam profile

Low noise

LASER MODULES • Micro Focus Generator

SERIES 13M • Elliptical Gaussian beam profile

LASER MODULES SERIES 5MC

- Compact Laser Micro Focus Generator
- Rotationally symmetric, Gaussian beam profile

LASER MODULES

SERIES 5M

- Compact Laser Micro Focus Generator
- Elliptical Gaussian beam profile

This is a printout of the page https://sukhamburg.com/products/lasermodules/series/13MC.html from 4/26/2024

CONTACT

For more information please contact: Schäfter + Kirchhoff GmbH Kieler Str. 212 22525 Hamburg Germany

Tel: +49 40 85 39 97-0 Fax: +49 40 85 39 97-79

info@sukhamburg.de www.sukhamburg.com

LEGAL NOTICE

Copyright 2020 Schäfter+Kirchhoff GmbH. All rights reserved.

Text, image, graphic, sound, video and animation files and their arrangement on Schäfter+Kirchhoff GmbH webpages are protected by copyright and other protective laws. The content may not be copied for commercial use or reproduced, modified or used on other websites. [more]