
Micro Focus Optics series 13M

for transforming a collimated beam into a micro focus spot

Amagnetic housing made from Titanium on request

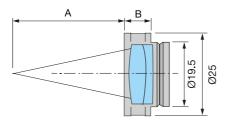
DESCRIPTION

Micro Focus Optics are used in order to generate small laser spots from the collimated radiation of a fiber collimator.

For spots < 10 times the mode field MFD of the fiber, a good quality spot can no longer be achieved by <u>simply refocusing</u> the collimation optics. Instead, a combination of collimation and focusing optics is needed. The size of the spot and its <u>Rayleigh</u> range is <u>determinded</u> by the fiber properties and by the focal lengths of the fiber collimator and of the micro focus optics. For single-mode fibers the Gaussian intensity distribution and beam shape are maintained.

For the fiber collimators series 60FC-L or 60FC-T with an outer diameter Ø 25 mm Schäfter+Kirchhoff offer Micro Focus Optics with focal lengths in the range f 25 mm - 1000 mm.

There is a large variety of <u>duplet</u> or <u>singlet</u> optics with AR coatings from the UV to the IR wavelengths range.


Adjustment:

In order to change the working distance of the Micro Focus Optics the lens position of the adjacent collimator has to be readjusted.

Housing material:

As standard the housing of the Micro Focus Optics is made of nickel silver. For amagnetic fiber collimators Schäfter+Kirchhoff offers Micro Focus Optics with housings made of titanium.

ORDER OPTIONS

Wavelength Range	AR Coating	Correction	Focal Length										
			25	30	40	50	60	75	100	125	250	500	1000
			mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
390 - 670 nm	33	Monochromatic					<u>×</u>						
630 - 980 nm	10	Monochromatic					<u>×</u>			<u>×</u>			
630 - 1080 nm	54	Monochromatic			<u>x</u>								
980 - 1550 nm	08	Monochromatic					<u>x</u>						
400 - 700 nm	01	Achromatic	<u>×</u>	<u>×</u>									
400 - 1000 nm	24	Achromatic			<u>×</u>	<u>×</u>	<u>x</u>	<u>×</u>		<u>×</u>			
420 - 700 nm	26	Achromatic				<u>×</u>		<u>×</u>		<u>×</u>			
450 - 700 nm	04	Achromatic							<u>×</u>				
750 - 1550 nm	37	Achromatic	<u>×</u>	<u>×</u>									
390 - 670 nm	33	-									<u>×</u>	<u>×</u>	<u>X</u>
600 - 1060 nm	05	-									<u>×</u>	<u>×</u>	<u>×</u>

TECHNOTES

 <u>Producing spots (3)</u> When can you produce a spot by simply refocusing the fiber collimator and when is a micro focus optics necessary?

<u>Refocusing the collimator to produce a focus spot</u>
<u>Beam divergence of a collimated beam exiting a single-mode fiber</u>

Producing spots by using a fiber collimator and a micro focus optics Calculation of spot diameter for single-mode fibers

<u>Rayleigh range</u>
<u>What is the depth of focus of my spot?</u>

DOWNLOADS

940130018200.pdf (Dimensional drawing)

This downloads section only includes general downloads for the complete series.

Please access the individual product pages (using the product configurator, the product list, order options or the search button if you have a complete order code). Here you will find specific downloads including technical drawings or stepfiles.

This is a printout of the page

https://sukhamburg.com/products/fiberoptics/fibercoupler/accessories/attachmentoptics/microfocus/13m.html from 5/3/2024

CONTACT

For more information please contact: Schäfter + Kirchhoff GmbH Kieler Str. 212 22525 Hamburg Germany Tel: +49 40 85 39 97-0 Fax: +49 40 85 39 97-79

info@sukhamburg.de www.sukhamburg.com

LEGAL NOTICE

Copyright 2020 Schäfter+Kirchhoff GmbH. All rights reserved.

Text, image, graphic, sound, video and animation files and their arrangement on Schäfter+Kirchhoff GmbH webpages are protected by copyright and other protective laws. The content may not be copied for commercial use or reproduced, modified or used on other websites. [more]

